Antenna Structures: Evaluation of Reflector Surface Distortions

M. S. Katow
DSIF Engineering Section

The reflector surface distortions of the 210-ft antenna as evaluated by the
linearized formulation of the RMS paraboloid best-fitting computer program has
provided sufficient significant digits in its answers for meaningful results. This
article presents a clearer documentation as well as the error bounds of the formula-
tion. Since basically the solution is a non-linear problem, improved formulation
would be desirable. However, the program should be useful for evaluating larger
than 210-ft antennas with about the same degree of distortion.

l. Introduction

Reflector surface distortions of antennas and their
effects on the RF performance may be evaluated by best
fitting to the distortions, in a least-squares pathlength
sense, a paraboloid. The resulting value

_ [S(APL)A;
s = 3 A

is applicable in Ruze equation for computing the RF gain.

A computer program for this purpose was described
earlier (Refs. 1 and 2). Results of its use with analytically

76

computed distortions and with field measurements of the
210-ft antenna in calculating its RF performance have
been reported (Refs. 3 and 4). Comparisons to RF per-
formance measurements were made by Bathker (Ref. 5).

With the use of positional data of the best-fit paraboloid
and the deflected positions of the RF feeds, the RF bore-
sight directions may be calculated (Ref. 6).

To date, the best fitting of the analytical 210-ft antenna
data using the linearized solution formulation has pro-
vided sufficient significant digits for meaningful results.
Comparisons between analytical solutions and RF field
tests have shown close correlations.
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Fig. 1. RF path-length change

This article presents the results of studies made to deter-
mine the accuracy bounds of the best-fitting program and
to present a clearer description of the formulation.

The documentation is presented as follows:

(1) The modifications, as well as the complete formula-
tions, are graphically and algebraically delineated.

(2) Data manipulations to improve the accuracy of field
measurements using the angle-measuring theodolite
method will be described in a following article. The
method combines the direction vectors from the
analytical analysis with the direction lacking field
measurements.

(3) The output has been converted to show SI (metric)
units in addition to English units values.

H. Formulation Modifications

From Refs. 1 and 2 the %-path-length change or error
may be denoted by

APL; = —8;°8, (1)
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Fig. 1 shows the graphical definition of the equation. The
basic assumption is made that the deflected surface is flat
and has moved parallel to the tangent at the node O.

The error due to this assumption is illustrated in Fig. 2.
A sample calculation using a point on the outer edge of the
210-ft dish results in a negligible error. For
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Fig. 2. Assumption error
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and assuming a normal error (OT of Fig. 2) = 1.0in., and
an approximate radius of curvature = 2000in., the path-
length error (P’P + PR’) = 0.00004 in.

The total normal distortion at a node on the surface of a
reflector from the best-fit paraboloid is the sum of four
types of normal errors:

Si == sia + sib + Sic + Sid (2)
The first,

S;s = surface distortions normal error

= nini + viSyi + w,-Sz,- (3)

The second,

Si» = normal error due to change in focal length from
the original paraboloid

= —K(x? + y?) S.: (4)

where

F = focal length of original paraboloid
Fy = focal length of best fit paraboloid

Equation (4) is derived from the equation of the paraboloid

x + yi
T (5)

Z; =

The change in z from a change in F results in

T+yifl 1
= (L 1)

which is equivalent to

_xty F
Az; = 4F (1 - sz) (6)

substituting Eqs. (5) into (6) and defining

F
K1~<1—F—N)

Sib = ——Klzisz,- (Flg 3) (7)

yields
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Fig. 3. Normal error from focal length change

Equation (7) is equivalent to Eq. (4) and is used in the
coding of the program.

The third,
Sic = normal error due to rigid body translations of the
paraboloid
= —U,S:: — VoSyi — WoS:i (8)
The fourth,
S;2 = normal error due to rigid body rotations of the
best-fit paraboloid
= (2:Syi — ¥iSx) + B (%:S2i — 2:Sai) (9)

The normal error due to positive (right-hand rule) rotation
about the Y axis is graphically defined in Fig. 4.

From Fig. 4, the normal error due to rigid body rota-
tion is

—8 = —Bx;S.i + BziSp
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Fig. 4. Normal error due to rotation about y axis
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which transposes to
8= (xiszi - ziswi)

The linear type of calculations for offsets due to rotation is
defined in Ref. 2 and, as stated therein, rotations are
limited to small angles.

In summing, the %-path-length change

APL; = [u;S,i + 08 + wiS.i — K'2;S.; — UgSes
—~ VoSyi = Woszi + @ (2:Syi — ¥iSz4)
+ B (282 — 2i844)] Sz (10)

Equation (10) is equivalent to the corrected Eq. (8) of
Ref. 1, with the exception that APL now is referenced to
%-path-length change, and as shown in the reference, the
best-fit paraboloid is found by minimizing R, the sum of
the squares of the residuals (i.e., path-length change)
where

R=5; (APLi)z A;

and where A; is a weighting factor (usually the area of
the surface panel associated with the measured point
when a uniform RF illumination density is assumed).

The minimization and the best-fit data of the new para-
boloid then result from a solution of a set of six linear
normal equations derived from setting the partials of R
with respect to the six parameters of motions equal to zero.

A new double-precision subroutine identified in the JPL
Fortran V Subroutine Library as DVANAS3-Singular
Value Analysis of a Linear Least Squares Problem (Ref. 7)
replaces the MATINV subroutine used for the solution of
the resulting matrix equation Ax = b, where

A=75A8..{D}{D}", x=C, b=73 A8y {D}

Sz‘i Uo
Syi Vo
Szi Wo

D= C=
(Syiyi - Szizi) «
(Sa:izi - Syixi)

yi = Seim; + Saiv; + Spw;
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The DVANAS3 subroutine computes and prints a se-
quence of candidate solutions with their singular values,
the sum of the squares of the residuals, and other quan-
tities useful in analyzing a least squares problem.

Preliminary evaluation, based on these quantities, indi-
cates that the matrix is well conditioned for accurate
answers of W, (z offset), K (focal length), « (rotation about
x axis) and g (rotation about y axis).

It follows that the RMS value is accurately determined.
However, the U, (x offset) and V, (y offset) answers results
from large ratios of singular values, and this requires pre-
cise input deflection values (u;, v;, w;) in order for U, and
V, answers to be meaningful. The present interpretation
is that the analytically computed deflections provide use-
ful U, and V, answers for determining the RF boresight
directions and the existing Theodolite-type field measure-
ments produce marginal answers.

Test problems were formulated to determine the lin-
earized formulation error which occurs only for rotations
a and 8. For the 210-ft case, where the rotation about the
x axis (a) was less than 0.003 rad, the rms error was
0.001 in. and V, displaced 0.004 in. For only translations
and focal length changes, the formulation is exact.

Definition of terms

Components of the distortion
vector of point or node i from
the original paraboloid

U, Vi, W; =X, 4,3

Szi,8,i,S:: = x,y,2 | Direction cosines of the normal
to the original paraboloid
Szi» Syi» Sz = x,y,2 | Direction cosines of the normal
to the best-fit paraboloid.
U,, Vo, W, | Rigid body translations or

vertex offsets of the best-fit
paraboloid

S: = normal component of the distortion vector of
point 1.

APL; = %-path-length change at point i.

A; = RF weighting function of point i.
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